

Instituto de Ingeniería Biológica y Médica

FACULTADES DE INGENIERÍA, MEDICINA Y CIENCIAS BIOLÓGICAS

Cursos Nivel Pregrado (Asociados a Major) 2022-2

Sigla	Título del Curso	Profesor	Tipo de curso
IBM1005	Introducción a la Ingeniería Biomédica	Sergio Uribe/Marcelo Andía	Optativo de Plan Común Exploratorio recomendado
IBM2123	Diseño en Ingeniería Biomédica II	Vicente Parot	Mínimo del Major en Ingeniería Biomédica
IBM2101	Imágenes Biomédicas	Carlos Sing Long	Mínimo del Minor en Ingeniería Biomédica
IBM2012	Monitoreo Fisiológico y Análisis de Datos	María Rodríguez	Optativo de Minor en Ingeniería Biomédica
IBM2992	Biología Sintética y Prototipado de Funciones Biológicas Artificiales	Tobias Wenzel	Curso mínimo del Minor en Bioingeniería - Área Biología Sintética

IBM1005 Introducción a la Ingeniería Biomédica

Sergio Uribe- suribe@med.puc.cl Licenciado y Magíster en Ciencias de la Ingeniería PhD en Resonancia Magnética

Marcelo Andía - meandia@uc.cl Ingeniero Mecánico y Médico-cirujano PhD en Imágenes, Ingeniería Biomédica

Campus: San Joaquín Prerrequisitos: (IIC1103(c) y MAT1610) o (IIC1103(c) y MAT1100)

Horario: CLAS L-W:3, AYU V:3 Créditos: 10

Tipo de curso: Optativo de Plan Común

Descripción del curso: En este curso nos centraremos en hacer una introducción a las herramientas que permiten abordar problemas del área de la ingeniería biomédica. La ingeniería biomédica es el resultado de la aplicación de los principios y técnicas de la ingeniería al campo de la medicina. Un ingeniero biomédico se desempeña en muchos campos como son la ingeniería de tejidos; la modelación de fenómenos fisiológicos; el diseño y fabricación de productos y tecnologías para la salud; la gestión o administración de los recursos técnicos ligados a un sistema de instituciones de salud.

IBM2123 Diseño en Ingeniería Biomédica II

Vicente Parot - vparot@uc.cl Ingeniero Civil Electricista PhD en Biofísica

Campus: San Joaquín

Horario: CAT M:4,5; AYU J:5 Créditos: 10

Prerrequisitos: IBM2123: IBM2122 o MED209A

Tipo de curso: Mínimo del Major en Ingeniería Biomédica

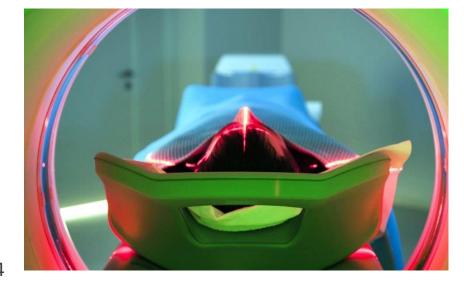
Descripción del curso: En el curso de Diseño en Ingeniería Biomédica I los alumnos emplearán las herramientas necesarias para aplicar conocimientos básicos de ingeniería y biología al diseño de procedimientos, dispositivos o herramientas tecnológicas de aplicación en medicina y ciencias de la salud. Los alumnos deben conjugar habilidades relacionadas con la identificación y resolución de problemas biomédicos, a través del diseño colaborativo, innovación, uso de tecnologías de información, modelación computacional, ética médica y responsabilidad social. La evaluación se basa en el diseño de un proyecto grupal en el semestre académico. IBM2123 es una continuación de Diseño en Ingeniería Biomédica I con un proyecto de grupo más avanzado.

IBM2101 Imágenes Biomédicas

Carlos Sing-Long - casinglo@uc.cl

Ingeniero Eléctrico PhD en Ingeniería Matemática y Computacional

Campus: San Joaquín


Horario: CAT M-J:3, AYU V:3

Prerreguisitos: IEE2102 o IEE2103 o IEE2714 o IEE3713 o IEE3714 o IIC2714

o IIC3713 o IIC3714

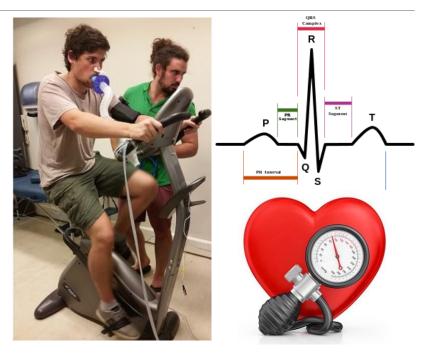
Créditos: 10

Tipo de curso: Mínimo del Minor en Ingeniería Biomédica

Descripción del curso: Las imágenes biomédicas son hoy en día una herramienta clínica estándar para el diagnóstico y seguimiento de patologías y la evaluación de algunas terapias. Existen diversas técnicas para hacer imágenes biomédicas y cada una de ellas se basa en diferentes fenómenos físicos con los cuales es posible crear imágenes de células, tejidos, órganos o estructuras más complejas de los seres vivos. El curso pretende que los estudiantes comprendan los fenómenos físicos y procesos matemáticos con los que es posible formar distintos tipos de imágenes biomédicas, y con esto entender las bondades y limitaciones de cada una de ellas.

IBM2012 Monitoreo Fisiológico y Análisis de Datos

María Rodríguez - marodriguezf@uc.cl
Ingeniera Química
PhD en Ingeniería Química


Campus: San Joaquín

Horario: CAT L W:3; AYU V:2

Prerrequisitos: Ninguno

Créditos: 10

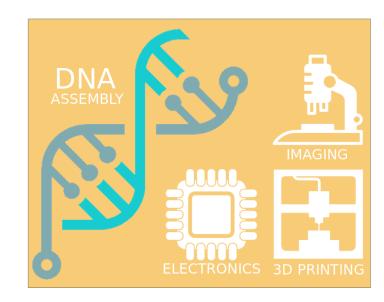
Tipo de curso: Optativo de Minor

Descripción del curso: El material de este curso cubre la descripción y el estudio de un amplio rango de sensores, transductores y mediciones de señales fisiológicas. En general cada transductor se describe a partir de sus principios básicos de funcionamiento, asumiendo que los alumnos cumplen con el conocimiento básico de los principios físicos y químicos involucrados. Luego, se presenta la implementación de un sistema utilizable clínicamente. Se describen los detalles del procesamiento de señales y las fuentes y magnitudes de los errores involucrados. Cuando es posible, se incorporan demostraciones prácticas de sensores.

IBM2992 Biología Sintética y Prototipado de Funciones Biológicas Artificiales

Tobias Wenzel- tobias.wenzel@uc.cl

Horario: CAT L:5, 6 AYU J:6


Licenciado en Ciencias PhD en Física

Campus: San Joaquín

Créditos: 10

Prerrequisitos: (BIO252I(c) y IIQ2693) o (BIO252I(c) y BIO297C))

Tipo de curso: Mínimo del Minor en Ing. Biológica

Descripción del curso: Este curso se enfoca en las tecnologías y herramientas de la Biología Sintética para diseñar ADN y crear sistemas artificiales con funciones novedosas. Consideramos la biología como una tecnología que se puede "programar" a través del ADN, para crear aplicaciones como por ejemplo, biocomputación, bioproducción, biosensores, diagnósticos médicos, y entrega de drogas entre otras. Se enseñan y se aplican técnicas modernas para diseñar y ensamblar ADN, y para medición, análisis y diseño de los sistemas construidos. El curso trata con métodos de enseñanza basados en "learning-by-making" y "hands on", y consiste en un proyecto semestral de diez semanas. Como un campo relativamente nuevo, las técnicas y aplicaciones sugieren temas de ética y seguridad, los cuales serán discutidos.

Instituto de Ingeniería Biológica y Médica

FACULTADES DE INGENIERÍA, MEDICINA Y CIENCIAS BIOLÓGICAS

Otros cursos de Pregrado 2022-2

Otros cursos de pregrado 2022-2

Sigla	Título del Curso	Profesor
BIO266E	Laboratorio Bioquímica II: Genética Molecular	Fernán Federici
BIO399E	Biología Sintética de Máquinas Biológicas	Fernán Federici
IMT2230	Álgebra Lineal Avanzada y Modelamiento	Carlos Sing-Long

BIO266E Laboratorio Bioquímica II: Genética Molecular

Fernán Federici- ffederici@bio.puc.cl Licenciado en Biología PhD en Ciencias Biológicas

Prerrequisitos: BIO257C y BIO288C

Créditos: 10

Descripción del curso:

Curso experimental orientado al desarrollo y manejo básico de las principales técnicas utilizadas en un laboratorio de bioquímica.

BIO399E Biología Sintética de Máquinas Biológicas

Fernán Federici- ffederici@bio.puc.cl Licenciado en Biología PhD en Ciencias Biológicas

Horario: V: 2,3

Prerrequisitos: no tiene

Créditos: 10

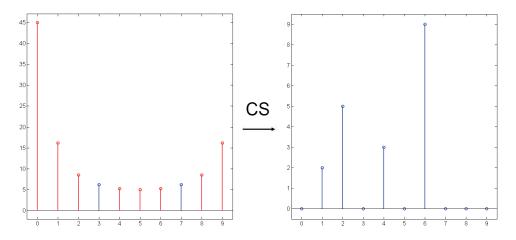
Descripción del curso: El curso introduce al estudiante en la disciplina de la biología sintética, con un enfoque teórico-práctico. Estudia el desarrollo de la biología sintética basada en principios de ingeniería y el uso de partes biológicas estándar (biobricks) en el diseño y la construcción de sistemas biológicos sintéticos

IMT2230 Álgebra Lineal Avanzada y Modelamiento

Carlos Sing-Long - casinglo@uc.cl

Ingeniero Eléctrico PhD en Ingeniería Matemática y Computacional

Campus: San Joaquín


Horario: CAT L-W:3, AYU J:4

Prerrequisitos: MAT1610 y IMT2210

problemas prácticos en ingeniería.

Créditos: 10

Durante este curso, los estudiantes conocerán la teoría y principales aplicaciones de la transformada de Fourier. Se pondrá especial énfasis en relacionar los principios teóricos del análisis de Fourier con su uso como herramienta para resolver diversos

Instituto de Ingeniería Biológica y Médica

FACULTADES DE INGENIERÍA, MEDICINA Y CIENCIAS BIOLÓGICAS